A new in vitro muscle contraction model and its application for analysis of mTORC1 signaling in combination with contraction and beta-hydroxy-beta-methylbutyrate administration.

A new in vitro muscle contraction model and its application for analysis of mTORC1 signaling in combination with contraction and beta-hydroxy-beta-methylbutyrate administration. Biosci Biotechnol Biochem. 2019 Jun 04;:1-7 Authors: Sato S, Nomura M, Yamana I, Uchiyama A, Furuichi Y, Manabe Y, Fujii NL Abstract Several food constituents augment exercise-induced muscle strength improvement; however, the detailed mechanism underlying these combined effects is unknown because of the lack of a cultured cell model for evaluating the contraction-induced muscle protein synthesis level. Here, we aimed to establish a new in vitro muscle contraction model for analyzing the activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. We adopted the tetanic electric stimulation of 50 V at 100 Hz for 10 min in L6.C11 myotubes. Akt, ERK1/2, and p70S6K phosphorylation increased significantly after electrical pulse stimulation (EPS), compared to untreated cells. Next, we used this model to analyze mTORC1 signaling in combination with exercise and beta-hydroxy-beta-methylbutyrate (HMB), an l-leucine metabolite. p70S6K phosphorylation increased significantly in the EPS+HMB group compared to that in the EPS-alone group. These findings show that our model could be used to analyze mTORC1 signaling and that HMB enhances muscle contraction-activated mTORC1 signaling. PMID: 31159662 [PubMed - as supplied by publisher]
Source: Bioscience, Biotechnology, and Biochemistry - Category: Biochemistry Authors: Tags: Biosci Biotechnol Biochem Source Type: research