TECHNIQUE Bioelectronic Approaches to Control Neuroimmune Interactions in Acute Kidney Injury

Recent studies have shown renal protective effects of bioelectric approaches, including ultrasound treatment, electrical vagus nerve stimulation, and optogenetic brainstem C1 neuron stimulation. The renal protection acquired by all three modalities was lost in splenectomized mice and/or α7 subunit of the nicotinic acetylcholine receptor–deficient mice. C1 neuron-mediated renal protection was blocked by β2-adrenergic receptor antagonist. These findings indicate that all three methods commonly, at least partially, activate the cholinergic anti-inflammatory pathway, a well-studied neuroimmune pathway. In this article, we summarize the current understanding of neuroimmune axis-mediated kidney protection in preclinical models of acute kidney injury by these three modalities. Examination of the differences among these three modalities might lead to a further elucidation of the neuroimmune axis involved in renal protection and is of interest for developing new therapeutic approaches.
Source: Cold Spring Harbor perspectives in medicine - Category: Research Authors: Tags: Bioelectronic Medicine TECHNIQUE Source Type: research

Related Links:

ConclusionOur results suggest that pulsed FUS exposure effectively suppresses epileptic spikes in an acute epilepsy animal model, and finds that ultrasound pulsation interferes with neuronal activity and affects the PTZ-induced PI3K-Akt-mTOR pathway, which might help explain the mechanism underlying ultrasound-related epileptic spike control.
Source: Brain Stimulation - Category: Neurology Source Type: research
ConclusionOur results suggest that pulsed FUS exposure effectively suppresses epileptic spikes in an acute epilepsy animal model, and finds that ultrasound pulsation interferes with neuronal activity and affects the PTZ-induced PI3K-Akt-mTOR pathway, which might help explain the mechanism underlying ultrasound-related epileptic spike control.
Source: Brain Stimulation - Category: Neurology Source Type: research
Epilepsy is a neurological disorder characterized by abnormal neuron discharge, and one-third of epilepsy patients suffer from drug-resistant epilepsy (DRE). The current management for DRE includes epileptogenic lesion resection, disconnection, and neuromodulation. Neuromodulation is achieved through invasive electrical stimulus including deep brain stimulation, vagus nerve stimulation, or responsive neurostimulation (RNS). As an alternative therapy, transcranial focused ultrasound (FUS) can transcranially and non-invasively modulate neuron activity.
Source: BRAIN STIMULATION: Basic, Translational, and Clinical Research in Neuromodulation - Category: Neurology Authors: Source Type: research
Condition:   Diabetes Mellitus, Type 2 Intervention:   Device: Ultrasound Vagus Nerve Stimulation (DECIMA) Sponsors:   Aucta Technologies, Inc.;   STATKING Clinical Services Recruiting
Source: ClinicalTrials.gov - Category: Research Source Type: clinical trials
Summary: Neuroimmune interaction is an emerging concept, wherein the nervous system modulates the immune system and vice versa. This concept is gaining attention as a novel therapeutic target in various inflammatory diseases including acute kidney injury (AKI). Vagus nerve stimulation or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway to prevent AKI in mice. The kidneys are innervated by sympathetic efferent and sensory afferent neurons, and these neurons also may play a role in the modulation of inflammation in AKI.
Source: Seminars in Nephrology - Category: Urology & Nephrology Authors: Source Type: research
In this study, we induced an inflammatory response in rats using lipopolysaccharides (LPS) and collected blood to analyze the effects of uVNS on cytokine concentrations. We applied one or three 5-min pulsed focused ultrasound stimulation treatments to the vagus nerve (250 kHz, ISPPA = 3 W/ cm2).
Source: Ultrasound in Medicine and Biology - Category: Radiology Authors: Tags: Original Contribution Source Type: research
ConclusionTargeted cervical VNS using this novel percutaneous approach reduced LPS-induced systemic and brain inflammation and significantly improved cognitive responses. These results provide a novel therapeutic approach using bioelectronic medicine to modulate neuro-immune interactions that affect cognition.
Source: Brain Stimulation - Category: Neurology Source Type: research
Background: No approved pharmacological agents are available for the treatment and prevention of acute kidney injury (AKI). The nervous system has been reported to play an important role, directly or indirectly via the immune system, in the pathophysiology of AKI. Neuromodulation, such as vagus nerve stimulation and pulsed ultrasound, is emerging as an innovative therapeutic treatment for various diseases including AKI. However, lack of effective methods to selectively stimulate or inhibit neurons has hampered the complete understanding of the roles of the nervous system in AKI because electrical stimulation is nonspecific...
Source: Nephron - Category: Urology & Nephrology Source Type: research
Inflammation is broadly recognized as an important factor in the pathogenesis of acute kidney injury (AKI), but pharmacological approaches to alleviate inflammation in AKI have been without success in clinical trials. Neuromodulation by nonpharmacological methods is emerging as a novel therapeutic strategy to treat inflammatory diseases. Recently, our group and others have demonstrated that vagus nerve stimulation and pulsed ultrasound ameliorated inflammation via the cholinergic anti-inflammatory pathway (CAP) in various animal models, including renal ischemia-reperfusion injury. Delineating the precise mechanisms by whic...
Source: Nephron - Category: Urology & Nephrology Source Type: research
We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings.
Source: Neurocritical Care - Category: Neurology Source Type: research
More News: Brain | Neurology | Opthalmology | Research | Study | Ultrasound | Urology & Nephrology | Vagus Nerve Stimulation Therapy