Detection of acoustic temporal fine structure by cochlear implant listeners: Behavioral results and computational modeling.

Detection of acoustic temporal fine structure by cochlear implant listeners: Behavioral results and computational modeling. Hear Res. 2013 Jan 17; Authors: Imennov NS, Won JH, Drennan WR, Jameyson E, Rubinstein JT Abstract A test of within-channel detection of acoustic temporal fine structure (aTFS) cues is presented. Eight cochlear implant listeners (CI) were asked to discriminate between two Schroeder-phase (SP) complexes using a two-alternative, forced-choice task. Because differences between the acoustic stimuli are primarily constrained to their aTFS, successful discrimination reflects a combination of the subjects' perception of and the strategy's ability to deliver aTFS cues. Subjects were mapped with single-channel Continuous Interleaved Sampling (CIS) and Simultaneous Analog Stimulation (SAS) strategies. To compare within- and across- channel delivery of aTFS cues, a 16-channel clinical HiRes strategy was also fitted. Throughout testing, SAS consistently outperformed the CIS strategy (p ≤ 0.002). For SP stimuli with F(0) = 50 Hz, the highest discrimination scores were achieved with the HiRes encoding, followed by scores with the SAS and the CIS strategies, respectively. At 200 Hz, single-channel SAS performed better than HiRes (p = 0.022), demonstrating that under a more challenging testing condition, discrimination performance with a single-channel analog encoding can exceed that of a 16-channel pulsatile strategy. To bette...
Source: Hearing Research - Category: Audiology Authors: Tags: Hear Res Source Type: research
More News: Audiology