A novel contact-independent T6SS that maintains redox homeostasis via Zn2+ and Mn2+ acquisition is conserved in the Burkholderia pseudomallei complex

Publication date: Available online 31 May 2019Source: Microbiological ResearchAuthor(s): David DeShazerAbstractThe Burkholderia pseudomallei complex consists of six phylogenetically related Gram-negative bacterial species that include environmental saprophytes and mammalian pathogens. These microbes possess multiple type VI secretion systems (T6SS) that provide a fitness advantage in diverse niches by translocating effector molecules into prokaryotic and eukaryotic cells in a contact-dependent manner. Several recent studies have elucidated the regulation and function of T6SS-2, a novel contact-independent member of the T6SS family. Expression of the T6SS-2 gene cluster is repressed by OxyR, Zur and TctR and is activated by GvmR and reactive oxygen species (ROS). The last two genes of the T6SS-2 gene cluster encode a zincophore (TseZ) and a manganeseophore (TseM) that are exported into the extracellular milieu in a contact-independent fashion when microbes encounter oxidative stress. TseZ and TseM bind Zn2+ and Mn2+, respectively, and deliver them to bacteria where they provide protection against the lethal effects of ROS. The TonB-dependent transporters that interact with TseZ and TseM, and actively transport Zn2+ and Mn2+ across the outer membrane, have also been identified. Finally, T6SS-2 provides a contact-independent growth advantage in nutrient limited environments and is critical for virulence in Galleria mellonella larvae, but is dispensable for virulence in rodent mo...
Source: Microbiological Research - Category: Infectious Diseases Source Type: research