Biodegradable nanoparticles exposing a short anti-FLT1 peptide as antiangiogenic platform to complement docetaxel anticancer activity.

Biodegradable nanoparticles exposing a short anti-FLT1 peptide as antiangiogenic platform to complement docetaxel anticancer activity. Mater Sci Eng C Mater Biol Appl. 2019 Sep;102:876-886 Authors: Conte C, Moret F, Esposito D, Dal Poggetto G, Avitabile C, Ungaro F, Romanelli A, Laurienzo P, Reddi E, Quaglia F Abstract Inhibition of tumor angiogenesis is considered as a valuable clinical strategy to treat some tumors, although benefits in term of progression-free and overall survival have been modest. Recent findings have pushed toward the use of antiangiogenic drugs in combination with chemotherapy regimens to potentiate therapeutic outcome. Herein, we propose a novel type of biodegradable antiangiogenic core-shell polymeric nanoparticles (NPs) for the delivery of poorly water-soluble chemotherapeutics. An amphiphilic diblock copolymer of poly(ethyleneglycol)-poly(ε-caprolactone) (PEG-PCL) was conjugated with an anti-FLT1 hexapeptide (aFLT1) at -OH PEG end, mixed in appropriate ratios with a monomethoxy-PEG-PCL and nanoprecipitated to form core-shell aFLT1-bearing NPs (DBLaFLT1). DBLaFLT1 were <100 nm, exposed aFLT1 on the surface and showed a higher thickness of the external hydrophilic shell as compared to NPs that do not bear aFLT1 (DBL). Very interestingly, DBLaFLT1 showed an antiangiogenic activity in the human umbilical endothelial cells (HUVEC) tube formation assay three-fold higher than an equivalent dose of free aFLT1...
Source: Appl Human Sci - Category: Physiology Authors: Tags: Mater Sci Eng C Mater Biol Appl Source Type: research