Crosstalk between fibroblast growth factor 23, iron, erythropoietin, and inflammation in kidney disease

Purpose of review Recent research has revealed that regulation of the bone-secreted hormone fibroblast growth factor 23 (FGF23) is not limited to classical mineral factors. Specifically, bidirectional relationships have been described between FGF23 production and anemia, iron status, and inflammation. Here, we will review the latest published articles on the crosstalk between FGF23 and the aforementioned nonclassical factors. Recent findings It has been recently reported that erythropoietin, iron deficiency, and inflammation increase FGF23 production and metabolism. Moreover, FGF23 promotes anemia and regulates inflammatory responses. These findings are particularly important in the setting of chronic kidney disease which is characterized by elevated FGF23 levels and several associated comorbidities. Summary Regulation of FGF23 is complex and involves many bone and renal factors. More recently, erythropoietin, iron deficiency, and inflammation have been also shown to affect FGF23 transcription and cleavage. Importantly, FGF23 has emerged as a regulator of erythropoiesis, iron metabolism, and inflammation. These findings provide novel and important insights into the pathophysiologic mechanisms of chronic kidney disease and may present new opportunities for therapeutic clinical interventions.
Source: Current Opinion in Nephrology and Hypertension - Category: Urology & Nephrology Tags: MINERAL METABOLISM: Edited by Aline Martin and Tamara Isakova Source Type: research