Development and evaluation of performance characteristics of timolol-loaded composite ocular films as potential delivery platform for treatment of glaucoma

Publication date: Available online 23 May 2019Source: International Journal of PharmaceuticsAuthor(s): Mohammad Tighsazzadeh, John C. Mitchell, Joshua S. BoatengAbstractThin and erodible polymeric films were developed as potential ocular drug delivery systems to increase drug retention on the eye with the aim of improving bioavailability and achieving controlled drug release. Two biocompatible film forming polymers, hyaluronic acid (HA) and hydroxypropyl methylcellulose (HPMC), which are currently used as thickening agents in eye drops were employed. Two different films were prepared (i) as single polymer and (ii) as composite formulations by solvent casting method, incorporating glycerol (GLY) as plasticizer and timolol maleate salt (TM) as model glaucoma drug. After preliminary optimization of transparency and ease of handling, the formulations were further characterized for their physicochemical properties. No indication of significant drug-polymer or polymer-polymer (in composite films) interaction was observed from FTIR results while evaluation by IR mapping revealed uniform distribution of drug throughout the films. Amorphization of TM in the film matrix was confirmed by both DSC and XRD. Swelling studies illustrated remarkable swelling capacity of HA in comparison with HPMC which directly affected the drug release profiles, making HA a suitable polymer for controlled ocular drug delivery. Tensile and mucoadhesion properties confirmed higher elasticity and adhesiveness ...
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research