Identification of LPS-Activated Endothelial Subpopulations With Distinct Inflammatory Phenotypes and Regulatory Signaling Mechanisms

Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Endothelial cells (EC) are actively involved in sepsis-associated (micro)vascular disturbances and subsequent organ dysfunction. Lipopolysaccharide (LPS), a Gram-negative bacterial product, can activate EC leading to the expression of pro-inflammatory molecules. This process is molecularly regulated by specific receptors and distinct, yet poorly understood intracellular signaling pathways. LPS-induced expression of endothelial adhesion molecules E-selectin and VCAM-1 in mice was previously shown to be organ- and microvascular-specific. Here we report that also within renal microvascular beds the endothelium expresses different extents of E-selectin and VCAM-1. This heterogeneity was recapitulated in vitro in LPS-activated human umbilical vein EC (HUVEC). Within 2 hr after LPS exposure, four distinct HUVEC subpopulations were visible by flow cytometric analysis detecting E-selectin and VCAM-1 protein. These encompassed E-selectin-/VCAM-1- (-/-), E-selectin+/VCAM-1- (E-sel+), E-selectin+/VCAM-1+ (+/+), and E-selectin-/VCAM-1+ (VCAM-1+) subpopulations. The formation of subpopulations was a common response of endothelial cells to LPS challenge. Using fluorescence-activated cell sorting (FACS) we demonstrated that the +/+ subpopulation also expressed the highest levels of inflammatory cytokines and chemokines. The differences in responsiveness of EC subpopulations could not be explained by ...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research