Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.

In this study, we used physically separated co-cultures of porcine neuroretina (NR) and human mesenchymal stem cells (MSC) to evaluate the MSC paracrine neuroprotective effects on NR degeneration. NR explants were obtained from porcine eyes and cultured alone or co-cultured with commercially available MSCs from Valladolid (MSCV; Citospin S.L.; Valladolid, Spain), currently used for several approved treatments. Cultures were maintained for 72 h. MSC surface markers were evaluated before and after co-culture with NRs. Culture supernatants were collected and the concentration of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial-derived neurotrophic factor (GDNF) were determined by enzyme-linked immunosorbent assays. NR sections were stained by haematoxylin/eosin or immunostained for terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), glial fibrillary acidic protein, β-tubulin III, and neuronal nuclei marker. NR morphology, morphometry, nuclei count, apoptosis rate, retinal ganglion cells, and glial cell activation were evaluated. Treatment effects were statistically analysed by parametric or non-parametric tests. The MSCs retained stem cell surface markers after co-culture with NR. BDNF and CNTF concentrations in NR-MSCV co-cultures were higher than other experimental conditions at 72 h (p < 0.05), but no GDNF was detected. NR general morphology, total thickness, and cell counts were broadly preserved in co-cul...
Source: Experimental Eye Research - Category: Opthalmology Authors: Tags: Exp Eye Res Source Type: research