Rifamycin SV exhibits strong anti-inflammatory in  vitro activity through pregnane X receptor stimulation and NFκB inhibition.

This study aimed to further evaluate the anti-inflammatory activities of rifamycin by analyzing its effect on two key regulators of inflammation: PXR and NFκB. Rifamycin stimulated PXR transcriptional activity in two PXR reporter cell lines and induced expression of two genes known to be regulated by PXR and are directly involved in cellular detoxification: CYP3A4 and PgP. Moreover, CYP3A4 metabolic activity was induced by rifamycin in HepG2 cells. Rifamycin also antagonized TNFα and LPS-induced NFκB activities and inhibited IL1β-induced synthesis of inflammatory chemokine, IL8. Although reciprocal regulation of PXR and NFkB by rifamycin was not directly addressed, the data suggest that in the absence of PXR, inhibition of NFκB by rifamycin is not dependent on PXR stimulation. Thus, rifamycin exhibits potent anti-inflammatory activities, characterized by in vitro PXR activation and concomitant CYP3A4 and PgP induction, in parallel with potent NFκB inhibition and concomitant IL8 inhibition. PMID: 31101589 [PubMed - as supplied by publisher]
Source: Drug Metabolism and Pharmacokinetics - Category: Drugs & Pharmacology Tags: Drug Metab Pharmacokinet Source Type: research