A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction

In this study, we have developed a novel, single-stage concept to support the weakened myocardial region post-MI by applying an elastic, biodegradable patch (SPREADS) via a minimal-invasive, closed chest intervention to the epicardial heart surface. We show a significant increase in %LVEF 14 days post-treatment when GS (clinical gold standard treatment) was compared to GS + SPREADS + Gel with and without cells (p ≤ 0.001). Furthermore, we did not find a significant difference in infarct quality or blood vessel density between any of the groups which suggests that neither infarct quality nor vascularization is the mechanism of action of SPREADS. The SPREADS device could potentially be used to deliver a range of new or previously developed biomaterial hydrogels, a remarkable potential to overcome the translational hurdles associated with hydrogel delivery to the heart.Graphical abstract
Source: Materials Science and Engineering: C - Category: Materials Science Source Type: research