Light-induced ZnO/Ag/rGO bactericidal photocatalyst with synergistic effect of sustained release of silver ions and enhanced reactive oxygen species

This study aims at designing an efficient and benign antimicrobial silver-based ternary composite composed of photocatalysis zinc oxide (ZnO) and reduced graphene oxide (rGO) as a carrier, in which the reactive oxygen species (ROS) excited from ZnO and Ag+ ions released from the Ag NPs cooperate to realize an effective antibacterial activity against E. coli and S. aureus. The constant effective bacterial performance of the ternary photocatalyst with minimum Ag content can be attributed to the increase in the available quantity of ROS, which results from the enhanced separation efficiency of the photogenerated carriers. The proposed system notably realized the long-term sustainable release of Ag+ ions with low concentration for 30 days when compared with an equivalent amount of silver nitrate. Moreover, the use of the composite prevents biotoxicity and silver wastage, and imparts enhanced stability to the long-lasting antibacterial efficacy.Graphical AbstractZnO/Ag/rGO bactericidal photocatalyst can realize effective antibacterial activity against E. coli and S. aureus by synergistic effects of Ag+ and reactive oxygen species (ROS). The sufficient radicals, together with sustained Ag+ can accelerate the death of bacteria through the destruction of biomolecules.
Source: Chinese Journal of Catalysis - Category: Chemistry Source Type: research