Polymer complexes. LXXV. Characterization of quinoline polymer complexes as potential bio-active and anti-corrosion agents

Publication date: Available online 10 May 2019Source: Materials Science and Engineering: CAuthor(s): M.I. Abou-Dobara, N.F. Omar, M.A. Diab, A.Z. El-Sonbati, Sh.M. Morgan, O.L. Salem, A.M. EldesokyAbstractThe Cu2+, Co2+, Ni2+ and UO22+ polymer complexes of 5-(2,3-dimethyl−1-phenylpyrazol-5-one azo)-8-hydroxyquinoline (HL) ligand were prepared and characterized. Elemental analyses, IR spectra, X-ray diffraction analysis and thermal analysis studies have been used to confirm the structure of the prepared polymer complexes. The chemical structure of metal chelates commensurate that the ligand acts as a neutral bis(bidentate) by through four sites of coordination (azo dye nitrogen, carbonyl oxygen, phenolic oxygen and hetero nitrogen from pyridine ring). The molecular and electronic structures of the hydrogen bond conformers of HL ligand were optimized theoretically and the quantum chemical parameters were calculated. Elemental analysis data suggested that the polymer complexes have composition of octahedral geometry for all the polymer complexes. Molecular docking of the binding between HL and the receptors of prostate cancer (PDB code 2Q7L Hormone) and the breast cancer (PDB code 1JNX Gene regulation) was studied. The interaction between HL and its polymer complexes with the calf thymus DNA (CT-DNA) was determined by absorption spectra. The antimicrobial activity of HL and its Cu2+, Co2+, Ni2+ and UO22+ polymer complexes were investigated; only Cu(II) polymer complex (1) was ...
Source: Materials Science and Engineering: C - Category: Materials Science Source Type: research