En route to delineating hippocampal roles in spatial learning.

En route to delineating hippocampal roles in spatial learning. Behav Brain Res. 2019 May 02;:111936 Authors: Poulter S, Austen JM, Kosaki Y, Dachtler J, Lever C, McGregor A Abstract The precise role played by the hippocampus in spatial learning tasks, such as the Morris Water Maze (MWM), is not fully understood. One theory is that the hippocampus is not required for 'knowing where' but rather is crucial in 'getting there'. To explore this idea in the MWM, we manipulated 'getting there' variables, such as passive transport or active swimming towards the hidden platform, in rats with and without hippocampal lesions. Our results suggested that for intact rats, self-motion cues enroute to the hidden goal were a necessary component for 'place learning' to progress. Specifically, intact rats could not learn the hidden goal location, when passively transported to it, despite extensive training. However, when rats were either given hippocampal lesions, or placed in a light-tight box during transportation to the hidden goal, passive-placement spatial learning was facilitated. In a subsequent experiment, the 'getting there' component of place navigation was simplified, via the placement of two overhead landmarks, one of which served as a beacon. When 'getting there' was made easier in this way, hippocampal lesions did not induce deficits in 'knowing where' the goal was. In fact, similar to the facilitation observed in passive-placement spatial...
Source: Behavioural Brain Research - Category: Neurology Authors: Tags: Behav Brain Res Source Type: research