Ganglioside GM2 catabolism is inhibited by storage compounds of mucopolysaccharidoses and by cationic amphiphilic drugs

Publication date: Available online 4 May 2019Source: Molecular Genetics and MetabolismAuthor(s): Susi Anheuser, Bernadette Breiden, Konrad SandhoffAbstractThe catabolism of ganglioside GM2 is dependent on the lysosomal enzyme β-hexosaminidase A and a supporting lipid transfer protein, the GM2 activator protein. A genetically based disturbance of GM2 catabolism, leads to several subtypes of the GM2 gangliosidosis: Tay-Sachs disease, Sandhoff disease, the AB-variant and the B1-variant, all of them having GM2 as major lysosomal storage compound.Further on it is known that the gangliosides GM2 and GM3 accumulate as secondary storage compounds in mucopolysaccharidoses, especially in Hunter disease, Hurler disease, Sanfilippo disease and Sly syndrome, with chondroitin sulfate as primary storage compound. The exact mechanism of ganglioside accumulation in mucopolysaccaridoses is still a matter of debate.Here, we show that chondroitin sulfate strongly inhibits the catabolism of membrane-bound GM2 by β-hexosaminidase A in presence of GM2 activator protein in vitro already at low micromolar concentrations. In contrast, hyaluronan, the major storage compound in mucopolysaccharidosis IX, a milder disease without secondary ganglioside accumulation, is a less effective inhibitor. On the other hand, hydrolysis of micellar-bound GM2 by β-hexosaminidase A without the assistance of GM2AP was not impeded by chondroitin sulfate implicating that the inhibition of GM2 hydrolysis by chondroitin ...
Source: Molecular Genetics and Metabolism - Category: Genetics & Stem Cells Source Type: research