Genome-Wide Association Study Identifies Genomic Loci Affecting Filet Firmness and Protein Content in Rainbow Trout

Conclusion The current GWA analyses identified novel genomic loci with a role in regulating muscle firmness and protein content. These genomic loci code for proteins involved in calcium homeostasis, transcriptional and chromatin regulators, cell adhesion, protein synthesis/degradation, and apoptotic processes. The top windows affecting the additive genetic variance in protein content and shear force appeared on chromosome 4 and 13, respectively. RYR3 was the major gene harboring the largest number of SNPs located within windows affecting the additive genetic variance in shear force and protein content. Abnormal calcium homeostasis in muscle cells accelerates postmortem protein degradation, and meat softness (Barbut et al., 2008). The current study revealed that WssGBLUP, using 50 adjacent SNP windows, provided putative markers that could be used to estimate breeding values for firmness and protein content. Data Availability All datasets generated for this study are included in the manuscript and/or the Supplementary Files. The genotypes (ped and .map files) and phenotypes are available in Supplementary Data Sheet S1. A list of all SNPs affecting the additive genetic variances are provided in Supplementary Tables S7, S8. Author Contributions MS, TL, and BK conceived and designed the experiments. RA-T, MS, TL, and BK performed the experiments. RA-T, AA, DL, BK, and MS analyzed the data. AA and MS wrote the manuscript. All authors reviewed and approved the publication. Fun...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research