Convergent inactivation of the skin-specific C-C motif chemokine ligand 27 in mammalian evolution

AbstractThe appearance of mammalian-specific skin features was a key evolutionary event contributing for the elaboration of physiological processes such as thermoregulation, adequate hydration, locomotion, and inflammation. Skin inflammatory and autoimmune processes engage a population of skin-infiltrating T cells expressing a specific C-C chemokine receptor (CCR10) which interacts with an epidermal CC chemokine, the skin-specific C-C motif chemokine ligand 27 (CCL27). CCL27 is selectively produced in the skin by keratinocytes, particularly upon inflammation, mediating the adhesion and homing of skin-infiltrating T cells. Here, we examined the evolution and coding condition ofCcl27 in 112 placental mammalian species. Our findings reveal that a number of open reading frame inactivation events such as insertions, deletions, and start and stop codon mutations independently occurred in Cetacea, Pholidota, Sirenia, Chiroptera, and Rodentia, totalizing 18 species. The diverse habitat settings and lifestyles ofCcl27-eroded lineages probably implied distinct evolutionary triggers rendering this gene unessential. For example, in Cetacea, the rapid renewal of skin layers minimizes the need for an elaborate inflammatory mechanism, mirrored by the absence of epidermal scabs. Our findings suggest that the convergent and independent loss ofCcl27 in mammalian evolution concurred with unique adaptive roads for skin physiology.
Source: Immunogenetics - Category: Genetics & Stem Cells Source Type: research
More News: Genetics | Physiology | Skin