Genome-Wide Identification and Characterization of the JAZ Gene Family in Rubber Tree (Hevea brasiliensis)

Conclusion Jasmonate signaling plays a vital role in the regulation of secondary laticifer differentiation and natural rubber biosynthesis. In the present study, JAZs, the repressors of jasmonate signaling, are genome-wide identified. Based on the computational analyses and gene expression patterns, HbJAZ5.0 and HbJAZ10.0b might be key regulators of laticifer differentiation whereas HbJAZ8.0b was crucial for regulation of natural rubber biosynthesis in H. brasiliensis. The genome-wide identification of HbJAZs will facilitate the jasmonate signaling-mediated laticifer differentiation and natural rubber biosynthesis in rubber tree. Author Contributions JC designed and carried out the experiment of this study and wrote the manuscript. YZ, JJ, SW, XM, and YC participated and analyzed data in the experiment. W-MT planned the study and participated in the design of the experiment. All authors have read and approved the manuscript in its final form. Funding This work was supported by the earmarked Fund for Modern Agro-industry Technology Research System (Grant No. CARS-34-GW1), the National Natural Science Foundation of China (30872002), the National Key R&D Program of China (Grant No. 2018YFD1000502), the Fundamental Research Funds for Rubber Research Institute, CATAS (Grant Nos. 1630022013004 and 1630022015010). Conflict of Interest Statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be ...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research