Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events

AbstractEvacuating residents out of affected areas is an important strategy for mitigating the impact of natural disasters. However, the resulting abrupt increase in the travel demand during evacuation causes severe congestions across the transportation system, which thereby interrupts other commuters' regular activities. In this article, a bilevel mathematical optimization model is formulated to address this issue, and our research objective is to maximize the transportation system resilience and restore its performance through two network reconfiguration schemes: contraflow (also referred to as lane reversal) and crossing elimination at intersections. Mathematical models are developed to represent the two reconfiguration schemes and characterize the interactions between traffic operators and passengers. Specifically, traffic operators act as leaders to determine the optimal system reconfiguration to minimize the total travel time for all the users (both evacuees and regular commuters), while passengers act as followers by freely choosing the path with the minimum travel time, which eventually converges to a user equilibrium state. For each given network reconfiguration, the lower ‐level problem is formulated as a traffic assignment problem (TAP) where each user tries to minimize his/her own travel time. To tackle the lower‐level optimization problem, a gradient projection method is leveraged to shift the flow from other nonshortest paths to the shortest path between eac...
Source: Risk Analysis - Category: International Medicine & Public Health Authors: Tags: Original Research Article Source Type: research

Related Links:

Publication date: Available online 25 February 2020Source: MitochondrionAuthor(s): Viraj Muthye, Dennis V. Lavrov
Source: Mitochondrion - Category: Biochemistry Source Type: research
Publication date: Available online 24 February 2020Source: MitochondrionAuthor(s): Deepika Kundu, Ritu Pasrija
Source: Mitochondrion - Category: Biochemistry Source Type: research
Publication date: Available online 24 February 2020Source: Microvascular ResearchAuthor(s): A. Alper Öztürk, İrem Namlı, Kadri Güleç, H. Tuba Kıyan
Source: Microvascular Research - Category: Biochemistry Source Type: research
Publication date: Available online 25 February 2020Source: Polymer TestingAuthor(s): Cijun Shuai, Xun Yuan, Wenjing Yang, Shuping Peng, Chongxian He, Pei Feng, Fangwei Qi, Guoyong Wang
Source: Polymer Testing - Category: Chemistry Source Type: research
Publication date: Available online 25 February 2020Source: Polymer TestingAuthor(s): Sattaiah Naidu K, Abhijeet S. Kate, Vikas Kshirsagar, R. Ganeshan, Tukaram Gunale, Bing Zhou, Samir Anapat, Yusuf Sulub, Arun Kumar, Narayana Rao
Source: Polymer Testing - Category: Chemistry Source Type: research
Publication date: April 2020Source: Phytochemistry Letters, Volume 36Author(s): Zeynep Dogan, Kan’ichiro Ishiuchi, Toshiaki Makino, Iclal Saracoglu
Source: Phytochemistry Letters - Category: Chemistry Source Type: research
Publication date: Available online 24 February 2020Source: Computational and Theoretical ChemistryAuthor(s): F. Paularokiadoss, A. Sekar, Thayalaraj Christopher Jeyakumar
Source: Computational and Theoretical Chemistry - Category: Chemistry Source Type: research
Soft Matter, 2020, Advance Article DOI: 10.1039/C9SM02494H, PaperGhazi Ben Messaoud, Patrick Le Griel, Daniel Hermida-Merino, Niki Baccile The structure-properties relationship of lipid lamellar hydrogels composed of a biobased microbial glucolipid biosurfactant is studied against pH, temperature and shear rate usingin situ rheo-SAXS experiments. To cite this article before page numbers are assigned, use the DOI form of citation above. The content of this RSS Feed (c) The Royal Society of Chemistry
Source: RSC - Soft Matter latest articles - Category: Chemistry Authors: Source Type: research
Soft Matter, 2020, Accepted Manuscript DOI: 10.1039/D0SM00001A, Review ArticleCharles E Sing, Sarah L Perry Complex coacervation is an associative, liquid-liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase,... The content of this RSS Feed (c) The Royal Society of Chemistry
Source: RSC - Soft Matter latest articles - Category: Chemistry Authors: Source Type: research
Phys. Chem. Chem. Phys., 2020, Accepted Manuscript DOI: 10.1039/C9CP05699H, PaperMeng-Meng Wang, Yan-Xia Zhao, Xun-Lei Ding, Wei Li, Sheng-Gui He The ability of transition metals to activate methane is quite different, and it is attractive to find the most suitable metal for the direct conversion of methane to value-added chemicals.... The content of this RSS Feed (c) The Royal Society of Chemistry
Source: RSC - Phys. Chem. Chem. Phys. latest articles - Category: Chemistry Authors: Source Type: research
More News: International Medicine & Public Health