Effects of the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens on survival of biofilm cells under food-related stresses and transfer to salmon.

This study evaluated how the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens affects biofilm formation and biofilm cell response to food-related stress (desiccation or disinfection) as well as the transferability of L. monocytogenes to salmon products. The results showed that the colonization sequence did not affect the population of dual species biofilms. Furthermore, survival number of L. monocytogenes was 0.8 log CFU/cm2 higher when P. fluorescens was the first colonizer during desiccation or disinfectant treatment in comparison with dual-species biofilms with other colonization sequences. A lower transfer rate of L. monocytogenes biofilm cells from dual-species biofilms was observed as compared to single species biofilms. In particular, L. monocytogenes cells detached at a slower rate during transfer to 10 slices of salmon from dual-species biofilms first established by P. fluorescens. Confocal images revealed more exopolysaccharide production in dual-speciesbiofilms first established by P. fluorescens than in biofilms generated via other sequences. These results indicate that preexisting P. fluorescens biofilms on stainless steel can enhance resistance of L. monocytogenes to desiccation and disinfection, although this setup decreased the transfer rate of L. monocytogenes to salmon slices. Thus, this study highlights the risk of L. monocytogenes contamination in pre-formed Pseudomonas biofilms at salmon processing facilities. PMID: 3102...
Source: Food Microbiology - Category: Food Science Authors: Tags: Food Microbiol Source Type: research