From Energy Deposition of Ionizing Radiation to Cell Damage Signaling: Benchmarking Simulations by Measured Yields of Initial DNA Damage after Ion Microbeam Irradiation.

From Energy Deposition of Ionizing Radiation to Cell Damage Signaling: Benchmarking Simulations by Measured Yields of Initial DNA Damage after Ion Microbeam Irradiation. Radiat Res. 2019 Apr 25;: Authors: Gonon G, Villagrasa C, Voisin P, Meylan S, Bueno M, Benadjaoud MA, Tang N, Langner F, Rabus H, Barquinero JF, Giesen U, Gruel G Abstract Advances in accelerator technology, which have enabled conforming radiotherapy with charged hadronic species, have brought benefits as well as potential new risks to patients. To better understand the effects of ionizing radiation on tumor and surrounding tissue, it is important to investigate and quantify the relationship between energy deposition at the nanometric scale and the initial biological events. Monte Carlo track structure simulation codes provide a powerful tool for investigating this relationship; however, their success and reliability are dependent on their improvement and development accordingly to the dedicated biological data to which they are challenged. For this aim, a microbeam facility that allows for fluence control, down to one ion per cell nucleus, was used to evaluate relative frequencies of DNA damage after interaction between the incoming ion and DNA according to radiation quality. Primary human cells were exposed to alpha particles of three different energies with respective linear energy transfers (LETs) of approximately 36, 85 or 170 keV·μm-1 at the cells' center pos...
Source: Radiation Research - Category: Physics Authors: Tags: Radiat Res Source Type: research