Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes?

Conclusion Taken together, evidence from animal and human studies demonstrates that the brain detects levels of circulating nutrients and hormones and consequently organizes an outward response that contributes to the regulation of whole-body glucose homeostasis. However, there are major knowledge gaps about the exact nature of this response and its relative importance compared to peripheral processes. As we have seen, animal studies have provided an anatomical map of CNS glucose regulation and have identified important neurons and neural circuits involved. Additionally, the CNS sensing of key nutrients and hormones has been characterized in detail and the intracellular signaling pathways have been outlined for most of them. Studies of humans entail inherent methodological challenges compared to animal studies that may explain the inconsistent findings in some areas. There are some intriguing epidemiological relationships between CNS and metabolic disorders and dysregulation of the ANS or HPA axis have both been proposed as the mediators of this connection. Attempts to demonstrate this have yielded somewhat discordant findings, however. The extra-pancreatic effects of diazoxide and GLP-1 may very well be extra-cerebral as well and the favorable effect of intranasal oxytocin on glucose metabolism is interesting but not necessarily secondary to actions in the CNS. The use of somatostatin and octreotide in some studies to inhibit pancreatic hormone secretion may possibly indu...
Source: Frontiers in Physiology - Category: Physiology Source Type: research