A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram

X-ray computed tomography and, specifically, time-resolved volumetric tomography data collections (4D datasets) routinely produce terabytes of data, which need to be effectively processed after capture. This is often complicated due to the high rate of data collection required to capture at sufficient time-resolution events of interest in a time-series, compelling the researchers to perform data collection with a low number of projections for each tomogram in order to achieve the desired `frame rate'. It is common practice to collect a representative tomogram with many projections, after or before the time-critical portion of the experiment without detrimentally affecting the time-series to aid the analysis process. For this paper these highly sampled data are used to aid feature detection in the rapidly collected tomograms by assisting with the upsampling of their projections, which is equivalent to upscaling the θ -axis of the sinograms. In this paper, a super-resolution approach is proposed based on deep learning (termed an upscaling Deep Neural Network, or UDNN) that aims to upscale the sinogram space of individual tomograms in a 4D dataset of a sample. This is done using learned behaviour from a dataset containing a high number of projections, taken of the same sample and occurring at the beginning or the end of the data collection. The prior provided by the highly sampled tomogram allows the application of an upscaling process with better accuracy than existing interpo...
Source: Journal of Synchrotron Radiation - Category: Physics Authors: Tags: convolutional neural networks projection upsampling sinogram upscaling time-resolved X-ray computed tomography research papers Source Type: research