Hierarchical bioresponsive nanocarriers for codelivery of curcumin and doxorubicin

In this study, we designed pH and redox dual-stage responsive nanocarriers in the different delivery stages for co-delivery phosphorylated curcumin (p-Cur) with doxorubicin (Dox). The MSNs nanocarriers were functionalized via specific cleavable PEGylation and hydrogel coating crosslinked by disulfide bonds: MSNs as core load Dox; p-Cur encapsulated in hydrogel coating. In blood circulation, PEGylation endow the nanocarriers with long time during blood circulation; while in tumor tissue, PEG shells could be cleaved due to the pH-sensitive bond and expose the cationic hydrogel coating to improve cell uptake; while inside tumor cells, hydrogel coating could be cleaved due to the GSH and release the drugs. The results showed that the dual-responsive shells endowed the nanocarriers with tumor extracellular pH-triggered cell uptake and specific cancer cell target release. The synergistic effects of the p-Cur and Dox enhanced cellular apoptosis in Hela cells.Graphical abstract
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research