Inhibitory effect of mabuterol on proliferation of rat ASMCs induced by PDGF-BB via regulating [Ca2+]i and mitochondrial fission/fusion

This study is aimed to investigate whether Mabuterol (Mab) inhibits proliferation of airway smooth muscle cells (ASMCs) induced by platelet-derived growth factor BB (PDGF-BB) and how far it is related to mitochondrial fission/fusion and intracellular calcium if it comes into play. To explore the mechanism of Mab's antagonizing the proliferation, Mdivi-1, DRP1 inhibitor, which has an inhibitory effect on mitochondrial fission, is used to compare with Mab. Cell viability was measured by either MTT or CCK-8. The inhibitory effect of Mab on S phase of ASM cell cycle induced by PDGF-BB was analyzed by flow cytometry (FCM). Fluo-3/AM, Ca2+ fluorescent probe, was used to detect Ca2+ fluorescence intensity by inverted microscope and flow cytometry. The gene expression of Drp-1 and mfn-2 was observed with Real time PCR and the proteins of Drp-1, Mfn-2, PCNA and cyclin D1 were assessed by Western Blot. Mab and Mdivi-1 both suppressed the proliferation induced by PDGF-BB. The results from inverted microscope and flow cytometry show that Mab inhibited [Ca2+]i in rat ASMCs induced by PDGF-BB. Cell cycle concept map illustrated that Mab significantly controlled the S phase of ASM cell cycle induced by PDGF-BB. As a consequence, Real time PCR and Western blot revealed the fact that Mab decreased the expression of Drp-1 mRNA and protein, and promoted the expression of Mfn-2 mRNA and protein. These findings suggest that Mab placed restrictions on the proliferation of rat ASMCs induced by PDGF...
Source: Chemico Biological Interactions - Category: Biochemistry Source Type: research