Photocurrent in single walled carbon nanotubes

In this study, photoresponse in semiconducting single-walled carbon nanotubes is investigated using density functional theory. The photocurrent generated is found to increase with the increasing electrode voltage at a constant flux. In all models the current increases uniformly with applied voltage and maximum value of current is found in the pristine CNT model, however the magnitude of photocurrent decreases in the homogenously nitrogen and boron doped models. Moreover, the photocurrent increases with increase in flux showing photoresistive property in CNTs. The spectral peaks appear at different wavelengths in the three models paving way for wide range of applications in the futuristic optoelectronic devices.
Source: Physics Letters A - Category: Physics Source Type: research