Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats.

Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats. Chem Biol Interact. 2019 Apr 25;303:62-69 Authors: Jayachandran M, Wu Z, Ganesan K, Khalid S, Chung SM, Xu B Abstract Lifestyle and genetic factors contribute to the initiation of oxidative stress and inflammation in diabetes mellitus (DM). Oxidative stress and lipid peroxidation worked in an orchestrated manner and reported to be strongly associated with the formation of the hyperlipidemic condition in DM patients. Isoquercetin, a bioactive constituent isolated from guava leaves has attracted considerable attention because of its antidiabetic activity. The antidiabetic activity of guava leaves may be due to the presence of isoquercetin at a significant level. However, how isoquercetin regulates different pathways in DM is insufficiently studied. We have selected versatile regulators of oxidative stress and inflammatory pathways to fully analyze if isoquercetin effectively modulated the genes of these pathways. At the end of our experimental duration, rats were dissected and analyzed for the oxidative stress, lipid peroxidation, inflammatory and lipid markers. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is believed to be the key regulator of expression of various antioxidant enzyme genes and it is directly or indirectly related to nuclear factor Kappa- B (NF-kB) and AMP-a...
Source: Chemico-Biological Interactions - Category: Molecular Biology Authors: Tags: Chem Biol Interact Source Type: research