Assessing Cerebral Metabolism in the Immature Rodent: From Extracts to Real-Time Assessments

Brain development is an energy-expensive process. Although glucose is irreplaceable, the developing brain utilizes a variety of substrates such as lactate and the ketone bodies, β-hydroxybutyrate and acetoacetate, to produce energy and synthesize the structural components necessary for cerebral maturation. When oxygen and nutrient supplies to the brain are restricted, as in neonatal hypoxia-ischemia (HI), cerebral energy metabolism undergoes alterations in substrate use to preserve the production of adenosine triphosphate. These changes have been studied by in situ biochemical methods that yielded valuable quantitative information about high-energy and glycolytic metabolites and established a temporal profile of the cerebral metabolic response to hypoxia and HI. Howe ver, these analyses relied on terminal experiments and averaging values from several animals at each time point as well as challenging requirements for accurate tissue processing.More recent methodologies have focused on in vivo longitudinal analyses in individual animals. The emerging field of metabolomics provides a new investigative tool for studying cerebral metabolism. Magnetic resonance spectroscopy (MRS) has enabled the acquisition of a snapshot of the metabolic status of the brain as quantifiable spectra of various intracellular metabolites. Proton (1H) MRS has been used extensively as an experimental and diagnostic tool of HI in the pursuit of markers of long-term neurodevelopmental outcomes. Still, the...
Source: Developmental Neuroscience - Category: Neuroscience Source Type: research