Effectiveness of a new green technology for metal removal from contaminated water

Publication date: June 2019Source: Microchemical Journal, Volume 147Author(s): Paola Grenni, Anna Barra Caracciolo, Livia Mariani, Martina Cardoni, Cristina Riccucci, Hannan Elhaes, Medhat A. IbrahimAbstractWater pollution by heavy metals is a matter of growing concern due to their potential toxicity for biota. The development of new and cost-effective remediation strategies is a priority in this field. For this purpose, a green technology, consisting of organic waste made up of a composite of water hyacinth dry matter and sodium alginate in microsphere form, was tested for its potential to adsorb lead and cadmium in river water samples.The water hyacinth‑sodium alginate composite molecular conformation was analysed first in order to obtain the potential energy surfaces. A high dipole moment, useful for the adsorption of heavy metals, was found. Accordingly, the cross-linked microspheres were prepared by combining water hyacinth dry matter and sodium alginate in a 1:1 ratio. Their metal adsorption and any effect on the natural microbial river community were verified with laboratory microcosm experiments lasting 11 days, using river water spiked with lead and cadmium (1 mg/L each). For this purpose, chemical (metal concentrations) and microbial (microbial abundance, viability and taxonomic composition) analyses were performed. Moreover, the ecotoxicity (with Vibrio fischeri - ISO 11348-3:2007) of water samples from microcosms in the presence/absence of the microspheres a...
Source: Microchemical Journal - Category: Chemistry Source Type: research