Mussel adhesive protein fused with VE-cadherin extracellular domain promotes endothelial-cell tight junctions and in vivo endothelization recovery of vascular stent.

In this study, using stent implants coated with VE-M, we evaluated the clinical applicability of VE-M in endothelialization recovery in vivo. First, we explored the effect of VE-M on hemocompatibility and tight junctions between endothelial cells (ECs) in vitro. VE-M significantly inhibited platelet adhesion and promoted EC proliferation. Furthermore, VE-M drastically increased the centralization of F-actin in human umbilical vein endothelial cells (HUVECs) along the cell contacts, reduced fluorescein isothiocyanate (FITC)-dextran transport across the HUVECs, and elevated expression levels of tight junction proteins (TJPs) in ECs. We then evaluated the effect of VE-M on endothelialization recovery in vivo through implantation of vascular stents. At 1 day after implantation, stents coated with VE-M recruited more endothelial progenitor cells (EPCs) than bare stents. At 7 days after implantation, VE-M stents had a greater coverage of ECs than bare stents. At 1 month after implantation, ECs on VE-M stents were appropriately elliptical in morphology and closely resembled physiological morphology. Hematoxylin-eosin (HE) staining revealed little in-stent neointima formation on VE-M stents, and SEM images revealed that smooth endothelium had formed on VE-M stents without adherent platelets. Taken together, these findings indicate that VE-M accelerates in vivo endothelialization of vascular stents via recruitment of EPCs and promotes endothelium formation and could be explored as a p...
Source: Biomed Res - Category: Research Authors: Tags: J Biomed Mater Res B Appl Biomater Source Type: research
More News: Research | Study | Thrombosis