Quantitative analysis of technetium-99m-sestamibi uptake and washout in parathyroid scintigraphy supports dual mechanisms of lesion conspicuity

Purpose Proposed mechanisms of parathyroid localization in ‘dual-phase’ technetium-99m-sestamibi imaging include increased presence of mitochondria leading to greater uptake and slower washout compared with thyroid tissues owing to reduced expression of P-glycoprotein. Using new techniques of quantitative single-photon emission computed tomography (SPECT)/computed tomography (CT), we have measured MIBI uptake and washout to better understand factors related to conspicuity. Patients and methods We retrospectively reviewed 125 consecutive patients. Early and delayed SPECT/CT images were reconstructed using a previously validated technique. Maximum standardized uptake values of parathyroid adenomas and thyroid tissue were measured, and corresponding washout rates were calculated. Results Of 53 patients with localization of parathyroid adenoma (42%), median maximum standardized uptake values were higher for parathyroid adenomas than for thyroid tissue on both early (6.43±3.78 vs. 4.43±1.93, P
Source: Nuclear Medicine Communications - Category: Nuclear Medicine Tags: ORIGINAL ARTICLES Source Type: research