Enhanced electrochemical performance and mechanism study of AgLi1/3Sn2/3O2 for lithium storage

Publication date: Available online 10 April 2019Source: Chinese Chemical LettersAuthor(s): Fan Lu, Jie Yang, Ling Zhou, Xinyue Wang, Yin Yang, Jumei LiAbstractHerein, AgLi1/3Sn2/3O2 with delafossite structure was prepared by treating the layered compound Li2SnO3 with molten AgNO3 via ion exchange of Li+ for Ag+. The structure characterization and the electrochemical performance of AgLi1/3Sn2/3O2 was thoroughly investigated. AgLi1/3Sn2/3O2 is found to possess stacking lamellar morphology, which means small electrochemical impedance and so facilitates charge transfer kinetics during the cycling. Compared with Li2SnO3, due to the introducing of excellent electrical conductivity of silver, AgLi1/3Sn2/3O2 exhibits improved electrochemical performance in terms of capacity, cycling stability and coulombic efficiency. The results show AgLi1/3Sn2/3O2 presents favorable specific capacity of 339 mA h/g at current density of 200 mA/g after 50 cycles and initial coulombic efficiency of 96%. Ex situ XRD analysis revealed the reaction mechanism of AgLi1/3Sn2/3O2 as an anode for lithium ion batteries.Graphical abstractAgLi1/3Sn2/3O2 with delafossite structure is prepared by treating Li2SnO3 with molten AgNO3 and it exhibits improved electrochemical performance compared to Li2SnO3.
Source: Chinese Chemical Letters - Category: Chemistry Source Type: research