Mulberrin attenuates 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-induced Parkinson’s disease by promoting Wnt/β-catenin signaling pathway

This study was to investigate the functions and mechanisms of mulberrin in PD. PD models were established by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to Sprague Dawley rats in vivo and Lipopolysaccharide (LPS) treatment on microglial BV2 cells in vitro. Rota-rod test was applied to investigate the roles of mulberrin on MPTP-induced behavioral impairment. The effects of mulberrin on neuronal number and microglia activation were assessed by tyrosine hydroxylase (TH) immunohistochemistry and ionized calcium binding adaptor molecule-1 (Iba-1) immunofluorescence. Inflammatory cytokines and oxidative markers were measured by qRT-PCR. Wnt/β-catenin components were compared by Western blot. Mulberrin alleviated MPTP-induced impairment of motor coordination in a dose-dependent manner, and partially restored neuronal and microglial population. Neuroinflammation and oxidative stress were suppressed after mulberrin treatment both in vivo and in vitro. Wnt/β-catenin pathway was partially restored in BV2 cells. Finally, mulberrin rescued MPTP-induced abnormality in tracer elimination by MRI. Our study indicates that mulberrin is a potent suppressor of PD abnormalities and warrants further investigations in the clinical application of mulberrin for treating PD.
Source: Journal of Chemical Neuroanatomy - Category: Neuroscience Source Type: research