An ultrasensitive electrochemiluminescence biosensor for MicroRNA detection based on luminol-functionalized Au NPs@ZnO nanomaterials as signal probe and dissolved O2 as coreactant

Publication date: Available online 6 April 2019Source: Biosensors and BioelectronicsAuthor(s): Xiaoli Zhang, Weimin Li, Ying Zhou, Yaqin Chai, Ruo YuanAbstractIn this work, the ZnO nanostars with excellent catalytic performance were firstly used as the coreaction accelerator of luminol-O2 system to construct a biosensor for ultrasensitively detecting microRNA-21 (miRNA-21) in cancer cells. Specifically, ZnO nanostars could expedite the reduction of dissolved O2, generating more reactive oxygen species (ROSs) to extremely promote electrochemiluminescence (ECL) luminous efficiency of luminol. Thus luminol-functionalized Au NPs@ZnO (L-Au NPs@ZnO) nanomaterials were employed as signal probe to fabricate sensing nano-platform for achieving significant ECL emission as “signal on” state. Moreover, upon the addition of a tiny minority of target miRNA-21, massive ferrocene (Fc) could be immobilized on the sensing interface through hybridization chain reaction (HCR) triggered-DNA dendrimers self-assembly, in which Fc consumed dissolved O2 for prominently quenching the ECL emission of signal probe and then reached a “signal off” state. As a result, the biosensor performed a good linearity in 100 aM–100 pM and a low limit of detection (LOD) down to 18.6 aM. In general, this work utilized a new coreaction accelerator as an efficient amplification approach for ultrasensitively detecting target analyses, providing a promising approach in luminol-centric ECL bioanalysis fields.
Source: Biosensors and Bioelectronics - Category: Biotechnology Source Type: research