Harpagide inhibits neuronal apoptosis and promotes axonal regeneration after spinal cord injury in rats by activating the Wnt/ β-catenin signaling pathway.

In this study, we demonstrated that harpagide attenuated neuronal apoptosis via activation of the Wnt/β-catenin signaling pathway. This resulted in a promotion of axonal regeneration and an inhibition of glial scar formation, which ultimately improved functional behavioral recovery after SCI in rats. Specifically, the administration of harpagide after SCI increased the expression levels of β-catenin, c-myc and cyclin D1 proteins in spinal cord neurons, as well as increased the number of motor neurons and reduced the size of the SCI lesion area. In addition, the administration of harpagide after SCI also decreased the protein expression levels as well as the number of cells immuno-stained for the pro-apoptotic proteins Bax and cleaved-caspase 3. The expression level of the anti-apoptotic protein Bcl-2 was also increased. When the Wnt /β-catenin signaling pathway was inhibited, a weakened anti-apoptotic effect of harpagide was observed. Additionally, the application of harpagide led to an increase in NF200 staining and a reduction in GFAP staining in the SCI injury site. In summary, our study suggested that harpagide may be a promising drug for the treatment of SCI. PMID: 30940474 [PubMed - as supplied by publisher]
Source: Brain Research Bulletin - Category: Neurology Authors: Tags: Brain Res Bull Source Type: research