A study of inter-crystal scatter in dual-layer offset scintillator arrays for brain-dedicated PET scanners.

A study of inter-crystal scatter in dual-layer offset scintillator arrays for brain-dedicated PET scanners. Phys Med Biol. 2019 Apr 01;: Authors: Teimoorisichani M, Goertzen AL Abstract A dual-layer offset (DLO) detector enables depth-of-interaction (DOI) through light sharing between two layers of scintillation arrays with a single-ended readout (SER) scheme. However, the SER scheme in DLO detectors may lead to a layer misassignment when inter-crystal scattering occurs. The aim of this work is to study inter-crystal scattering and evaluate the effects of layer misidentifications in DLO detectors on the performance of scanners suitable for a brain-dedicated PET insert. The influence of layer misidentification on the coincidence response functions (CRFs) of 3 different DLO detectors with total/front/back layer thicknesses of 15/6/9 mm, 20/8/12 mm, and 25/7.5/17.5 mm and a crystal width of about 3 mm was studied through Monte Carlo simulations. To overcome layer misidentification, we studied a practical DLO detector design in which each layer can be read out independently through a discrete-layer readout (DLR) scheme where light sharing between the layers is avoided. The CRFs of the mentioned DLO detectors assuming SER and DLR were analyzed. To evaluate the effects of layer misidentification on image quality, images of a Derenzo-like phantom were also reconstructed for all DLO and their equivalent single layer PET scanners. Our analysi...
Source: Physics in Medicine and Biology - Category: Physics Authors: Tags: Phys Med Biol Source Type: research