Enhancing thermostability of Yarrowia lipolytica lipase 2 through engineering multiple disulfide bonds and mitigating reduced lipase production associated with disulfide bonds

In this study, combining different regional disulfide bonds had greater effect than combining same regional disulfide bonds. Furthermore, mutants with 4, 5, and 6 disulfide bonds exhibited dramatically enhanced thermostability. Compared with the wild-type, sextuple mutant 6s displayed a 22.53 and 31.23 ℃ increase in the melting temperature (Tm) and the half loss temperature at 15 min (T15 50), respectively, with greater pH stability and a wider reaction pH range. Molecular dynamics simulation revealed that multiple disulfide bonds resulted in more rigid structures of mutants 4s, 5s and 6s, and prolonged enzyme unfolding times. Moreover, secretions of mutants 5s and 6s were significantly increased by 60% and 80% by co-expressing with the chaperone protein disulfide isomerase (PDI), which mitigated the reduced production issue caused by multiple disulfide bonds. Results of this study indicated that enhanced heat endurance giving more potential for industrial application.
Source: Enzyme and Microbial Technology - Category: Biotechnology Source Type: research
More News: Biotechnology | Study