Low-Dose Radiation Promotes the Proliferation and Migration of AGE-Treated Endothelial Progenitor Cells Derived from Bone Marrow via Activating SDF-1/CXCR4/ERK Signaling Pathway.

Low-Dose Radiation Promotes the Proliferation and Migration of AGE-Treated Endothelial Progenitor Cells Derived from Bone Marrow via Activating SDF-1/CXCR4/ERK Signaling Pathway. Radiat Res. 2019 Mar 29;: Authors: Wang P, Zhang H, Li Z, Liu X, Jin Y, Lei M, Jiao Z, Bi Y, Guo W Abstract Low-dose radiation (LDR) has been confirmed to mobilize bone marrow-derived endothelial progenitor cells (EPCs) and promote diabetic wound healing. But it is unclear whether LDR acts directly on EPCs and promotes their proliferation and migration. Given the key role of advanced glycosylation end products (AGE) in the pathogenesis of diabetes, we used AGE to induce EPC damage. We then investigated the effect of LDR on the proliferation and migration of AGE-treated EPCs and explored the underlying mechanisms. EPCs cultured in vitro were treated with different concentrations of AGE, and the cells were then exposed to different low doses and treated with a specific antagonist for CXCR4, AMD3100 (1 μmol/l). The proliferation and migration abilities of EPCs were detected using the CCK-8 and wound healing assays, respectively. The mRNA and protein expression of SDF-1 and CXCR4 in AGE-treated EPCs were measured using qPCR and Western blot analysis, respectively. The expressions of ERK and phosphorylated ERK (pERK) were detected using Western blot analysis. The results showed that 200 mg/l and 400 mg/l AGE had an inhibitory effect on the proliferation of EPCs,...
Source: Radiation Research - Category: Physics Authors: Tags: Radiat Res Source Type: research