Role of temperature and carbonate system variability on a host-parasite system: Implications for the gigantism hypothesis

In this study, we compared the effect of a trematode species on shell size and morphology in adult individuals of the intertidal mussels Perumytilus purpuratus (>20 mm) collected from two local populations of contrasting environmental regimes experienced in central-southern Chile. Our field data indicates that in both study locations, parasitized mussels evidenced higher body sizes (shell length, total weight and volume) as compared with non-parasitized. In addition, parasitized mussels from the southern location evidenced thinner shells than non-parasitized ones and those collected from central Chile, suggesting geographical variation in shell carbonate precipitation across intertidal habitats of the Chilean coast. In laboratory conditions, mussels collected from a local population in central Chile were exposed to two temperature treatments (12 and 18 °C). Parasitized mussels showed higher growth rates than non-parasitized, regardless of the seawater temperature treatments. However, the metabolic rate was not influenced by the parasite condition or the temperature treatments. Our field and laboratory results support the parasite-induced gigantism hypothesis, and suggest that both the thermal environment and geographic location explain only a portion of the increased body size, while the parasitic condition is the most plausible factor modulating the outcome of this host-parasite interaction.Graphical abstract
Source: International Journal for Parasitology: Parasites and Wildlife - Category: Parasitology Source Type: research