Combined inhibition of HDAC and DNMT1 induces p85α/MEK-mediated cell cycle arrest by dual target inhibitor 208 in U937 cells

In this study, we reported a dual HDAC and DNMT inhibitor 208 and found it induced G1 cell cycle arrest and apoptosis in U937 cells. Proteome and bioinformatic analyses revealed that the combined inhibition of DNMT1 and HDAC by 208 affected the expression of a series of proteins involved in many biological processes. We observed that several proteins associated with G1 cell cycle arrest and apoptosis were down regulated after 208 treatment, including p85α, MEK, and CDK4, suggesting that 208 induces cell cycle arrest and apoptosis through the p85α/MEK-mediated pathway in U937 cells. Moreover, biological function analysis showed that the combined epigenetic inhibition influenced various processes, including the synthesis and processing of RNA, translation, protein transport, and DNA repair. These findings provide novel insight into the potential mechanisms of multifunctional epigenetic inhibitors, which supports their further improvement and development.Graphical AbstractHerein we reported an efficient dual DNMT and HDAC inhibitor 208 with great antiproliferative activity against U937 cells. Further studies revealed 208 affected the whole proteome profile and could induce G1 cell cycle arrest and apoptosis in U937 cells through upregulating CDK inhibitor p16 and downregulating cyclin-dependent kinases and their activators.
Source: Chinese Chemical Letters - Category: Chemistry Source Type: research

Related Links:

AbstractGenotoxic anti-cancer therapies such as chemotherapy and radiotherapy can contribute to an increase in second malignancies in cancer survivors due to their oncogenic effects on non-cancerous cells. Inhibition of histone deacetylase (HDAC) proteins or the proteasome differ from chemotherapy in that they eliminate cancer cells by regulating gene expression or cellular protein equilibrium, respectively. As members of these drug classes have been approved for clinical use in recent times, we investigated whether these two drug classes exhibit similar mutagenic capabilities as chemotherapy. The HDAC inhibitors vorinosta...
Source: Apoptosis - Category: Molecular Biology Source Type: research
Intestinal Epithelial Cells-Derived Hypoxia-Inducible Factor-1α Is Essential for the Homeostasis of Intestinal Intraepithelial Lymphocytes Lihua Sun1, Teming Li1, Hanlin Tang1, Kun Yu1, Yuanhang Ma1, Min Yu1, Yuan Qiu1, Pengyuan Xu2, Weidong Xiao1* and Hua Yang1* 1Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China 2Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China Hif-1α is a master regulator which involved in the transcriptional regulation of anti-inflammatory or cellular responding to h...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Conclusion As a critical regulator of inflammation and cell survival, the NFκB pathway is a promising target for diagnosing and treating kidney diseases. For modulation of the NFκB pathway in the clinic, a number of molecules can effectively inhibit NFκB signaling by targeting the receptors, associated adaptors, IKKs, IκBs and transcriptional regulators (144). There is further clinical evidence on small-molecule inhibitors of IKKα and NIK from recent trials on anti-cancer therapies (145). These clinical trials showed that the cancer-selective pharmacodynamic response of DTP3, the co-inhibitor...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Conclusions In the new era of targeted therapy, treatment options are increasingly based on the precise molecular and genetic profiling of tumor cells (58). Currently, the main challenge for further novel drug development in targeted therapy is the clarification of specific molecular mechanisms underlying the varied forms of tumors in clinic. It has been acknowledged that cancer is caused by a set of driver mutations. In this regard, it is of great significance to: (1) identify and validate key mutant genes and proteins in cancers as new targets; (2) identify patients most likely and unlikely to benefit from certain targe...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Publication date: Available online 13 April 2019Source: Progress in Biophysics and Molecular BiologyAuthor(s): Noa Lamm, Samuel Rogers, Anthony J. CesareAbstractDNA replication plays a central role in genome health. Deleterious alteration of replication dynamics, or “replication stress”, is a key driver of genome instability and oncogenesis. The replication stress response is regulated by the ATR kinase, which functions to mitigate replication abnormalities through coordinated efforts that arrest the cell cycle and repair damaged replication forks. mTOR kinase regulates signaling networks that control cell grow...
Source: Progress in Biophysics and Molecular Biology - Category: Molecular Biology Source Type: research
Conclusion The expression of the components of the PTN-MK-RPTPβ/ζ axis in immune cells and in inflammatory diseases suggests important roles for this axis in inflammation. Pleiotrophin has been recently identified as a limiting factor of metainflammation, a chronic pathological state that contributes to neuroinflammation and neurodegeneration. Pleiotrophin also seems to potentiate acute neuroinflammation independently of the inflammatory stimulus while MK seems to play different -even opposite- roles in acute neuroinflammation depending on the stimulus. Which are the functions of MK and PTN in chronic neuroinfla...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Abstract As a kinase at the crossroads of numerous metabolic and cell growth signaling pathways, glycogen synthase kinase-3 beta (GSK-3β) is a highly desirable therapeutic target in cancer. Despite its involvement in pathways associated with the pathogenesis of several malignancies, no selective GSK-3β inhibitor has been approved for the treatment of cancer. The regulatory role of GSK-3β in apoptosis, cell cycle, DNA repair, tumor growth, invasion, and metastasis reflects the therapeutic relevance of this target and provides the rationale for drug combinations. Emerging data on GSK-3β as a medi...
Source: Cancer Biology and Therapy - Category: Cancer & Oncology Authors: Tags: Cancer Biol Ther Source Type: research
Maintenance of genome integrity is crucial to preserve the function of long-term repopulating hematopoietic stem and progenitor cells (HSPCs) for lifelong blood production. DNA double strand breaks (DSBs) are well-studied cytotoxic DNA alterations that may arise from exposure to cancer therapies, such as ionizing radiation (IR) and chemotherapeutic agents, or from endogenous products of metabolic activities, such as reactive oxygen species (ROS).
Source: Experimental Hematology - Category: Hematology Authors: Tags: Brief Communication Source Type: research
This study was supported by the Shanghai Sailing Program [grant number 17YF1425200, 2017]; Chinese National Natural Science Funding [grant number 81702249, 2017]; Science and Technology Commission of Shanghai Municipality [grant number 17511103403, 2017]; The funder has no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Conflict of Interest Statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Acknowledgments We acknowledge the ex...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Yi He†, Wenyong Long† and Qing Liu* Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China Super-enhancers (SEs) refer to large clusters of enhancers that drive gene expressions. Recent data has provided novel insights in elucidating the roles of SEs in many diseases, including cancer. Many mechanisms involved in tumorigenesis and progression, ranging from internal gene mutation and rearrangement to external damage and inducement, have been demonstrated to be highly associated with SEs. Moreover, translocation, formation, deletion, or duplication of SEs themselves co...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
More News: Cancer | Cancer & Oncology | Cancer Therapy | Chemistry | China Health | Gastroschisis Repair | Study