Filamentous bacteriophage: A prospective platform for targeting drugs in phage-mediated cancer therapy

Pankaj GargJournal of Cancer Research and Therapeutics 2019 15(8):1-10 A new modality of targeting therapeutic drugs based on the use of bacteriophage (virus), as an emerging tool for specific targeting and for vaccine development, has been an area of interest for genetic and cancer research. The approach is based on genetic manipulation and modification in the chemical structure of a filamentous bacteriophage that facilitates its application not only for in vivo imaging but also for therapeutic purpose, as a gene delivery vehicle, as drug carriers, and also as an immunomodulatory agent. Filamentous bacteriophage on account of its high surface holding ability with adaptable genetic engineering properties can effectively be used in loading of chemical and genetic drugs specifically on to the targeted lesion location. Moreover, the specific peptides/proteins exhibited on the phage surface can be applied directly as self-navigating drug delivery nanovehicles. The present review article has been framed with an objective to summarize the importance of bacteriophage in phage cancer therapy and to understand the possible future prospective of this approach in developing new tools for biotechnological and genetic research, especially in phage -mediated cancer therapy. Importantly, the peptides or proteins emerging from the surface of a nano carrier will make the expense of such peptides economically more effective as compared to other immunological tools, and this seems to be a pote...
Source: Journal of Cancer Research and Therapeutics - Category: Cancer & Oncology Authors: Source Type: research

Related Links:

Conclusion Several TISC-based immunotherapeutic approaches are under development in various stages of preclinical studies. As outlined in this review article, a careful and more exhaustive genetic and metabolic understanding of TISC-associated phenotypes is critical to develop novel TISC based immunotherapies. Various components within the tumor microenvironment such as tumor cells, infiltrating immune cells, and supporting stromal cells impact the TISC metabolism. This unique metabolic profile leads to upregulation of certain enzymes and proteins such as ALDH1, CEP55, IDO COA1 etc., which can be utilized for development ...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusions and Perspectives In this review, we have discussed important milestones from the early description of “Serum-sickness” as being due to antibodies directed against Neu5Gc epitopes all the way to the present-day therapeutic implications of these antibodies in cancer therapy. Some of these milestones have been represented in a concise timeline (Figure 6). While the “Xenosialitis” hypothesis is well-supported in the human-like mouse models, it has yet to be conclusively proven in humans. It remains to be seen if “Xenosialitis” plays a role in other uniquely-human diseases. FI...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Markus Hartl* and Rainer Schneider Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulate...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
In conclusion, CAR-T treatment combined with intratumoral delivery of poly I:C resulted in synergistic antitumor activity. We thus provide a rationale to translate this immunotherapeutic strategy to solid tumors. Introduction Adoptive T cell immunotherapy has been demonstrated to be a new way to fight malignancies. In particular, T lymphocytes engineered to express chimeric antigen receptor (CAR) have shown great promise in treating hematological malignancies (1). CD19-targeted CAR-T cells have been approved by FDA to treat relapsed B cell acute lymphoblastic leukemia (B-ALL) and Diffuse Large B-cell lymphoma (DLBC...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
In this study, T cells deficient in TRAF6 display enhanced T cell activation, CD28-indpendent stimulation and resistance to Treg cell-mediated suppression (176). Although TLR signaling can promote T cell resistance to Treg cells, the precise molecular mechanism remains yet to be elucidated. It is worth noting that TLR stimulation of T cells increases cytokine production (173, 177), thus future studies should delineate the effect of TLR-MyD88 signaling vs. subsequently induced cytokines in generating resistance to Treg cells. Lastly, it is also crucial to evaluate the effect of TLR signaling on regulatory T cells which also...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
T-cell receptors (TCR) have considerable potential as therapeutics and antibody-like reagents to monitor disease progression and vaccine efficacy. Whereas antibodies recognize only secreted and surface-bound proteins, TCRs recognize otherwise inaccessible disease-associated intracellular proteins when they are presented as processed peptides bound to major histocompatibility complexes (pMHC). TCRs have been primarily explored for cancer therapy applications but could also target infectious diseases such as cytomegalovirus (CMV). However, TCRs are more difficult to express and engineer than antibodies, and advanced methods ...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Editors ' Picks Source Type: research
Personalized Dendritic Cell Vaccines—Recent Breakthroughs and Encouraging Clinical Results Beatris Mastelic-Gavillet, Klara Balint, Caroline Boudousquie, Philippe O. Gannon and Lana E. Kandalaft* Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Cancer stem cells (CSCs) are crucial for tumor recurrence and distant metastasis. Immunologically targeting CSCs represents a promising strategy to improve efficacy of multimodal cancer therapy. Modulating the innate immune response involving Toll-like receptors, macrophages, natural killer cells, and γδT cells has therapeutic effects on CSCs. Antigens expressed by CSCs provide specific targets for immunotherapy. CSC-primed dendritic cell–based vaccines have induced significant antitumor immunity as an adjuvant therapy in experimental models of established tumors. Targeting the tumor microenv ironment CSC...
Source: Surgical Oncology Clinics of North America - Category: Surgery Authors: Source Type: research
Conclusions: These finding suggest that Poly-ICLC could be safely used for inducing transient innate immune responses in treated HIV+ subjects indicating promise as an adjuvant for HIV therapeutic vaccines. Trial Registration: www.ClinicalTrials.gov, identifier: NCT02071095. Introduction Innate immune dysregulation during HIV infection hinders the formation of anti-HIV adaptive immunity (1–6) resulting in rampant viral dissemination and progression to AIDS. Adherence to combination anti-retroviral therapy (cART) regimens controls viremia, restores CD4+T cell counts and reverses immune dysfunction to a larg ext...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Allergy & Immunology | Biotechnology | Cancer | Cancer & Oncology | Cancer Therapy | Cancer Vaccines | Chemistry | Genetics | Nanotechnology | Vaccines