Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles

This study demonstrates a simple one-pot green method for biosynthesis of terpenoids encapsulated copper oxide nanoparticles (CuONPs) using aqueous leaf extract of Eucalyptus globulus (ELE), as reducing, dispersing, and stabilizing agent. Indeed, the greater attachment and internalization of ELE-CuONPs in Gram-positive and -negative biofilm producing clinical bacterial isolates validated the hypothesis that terpenoids encapsulated CuONPs are more stable and effective antibacterial and antibiofilm agent vis-à-vis commercially available nano and micro sized analogues. Gas chromatography-mass spectroscopy (GC–MS) analysis of pristine ELE identified 17 types of terpenoids based on their mass-to-charge (m/z) ratios. Amongst them four bioactive terpenoids viz. terpineols, 2,6-octadienal-3,7-dimethyl, benzamidophenyl-4-benzoate and β-eudesmol were found associated with the CuONPs as ELE-cap, and most likely involved in the nucleation and stabilization of ELE-CuONPs. Further, the Fourier transformed infrared (FTIR) analysis of ELE-CuONPs also implicated other functional biomolecules like proteins, sugars, alkenes, etc. with ELE terpenoids corona. Flow cytometric (FCM) data exhibited significantly enhanced intracellular uptake propensity of terpenoids encapsulated ELE-CuONPs and accumulation of intracellular reactive oxygen species (ROS), which ensued killing of planktonic cells of extended spectrum β-lactamases (ESβL) producing Escherichia coli-336 (E. coli-336), Pseudomonas ae...
Source: Materials Science and Engineering: C - Category: Materials Science Source Type: research