Neuroprotective Influence of miR-301a Inhibition in Experimental Cerebral Ischemia/Reperfusion Rat Models Through Targeting NDRG2

The objective of this study is to find out the potential influence of miR-301a in an experimental cerebral ischemia-reperfusion (I/R) rat model through targetingNDRG2. Rats with cerebral I/R injury were constructed and classified into model, miR-301a inhibitor, miR-301a mimic, NC (negative control), siNDRG2, NDRG2, and miR-301a inhibitor + si-NDRG2 groups, as well as another sham group. Cerebral infarct volume and cell apoptosis were observed by TTC staining and TUNEL staining. The targeting relationship between miR-301a andNDRG2 was verified by luciferase assay. ELISA, qRT-PCR, and Western blot were used to detect the expressions of related molecules. Compared with sham group, rats in the model group had elevated neurological function score and infarct volume; meanwhile, the cell apoptosis rate and inflammatory response were also increased with enhanced expression of miR-301a and NDRG2 (allP <  0.05). These changes were worsened in the miR-301a mimic and si-NDRG2 groups. Conversely, those rats in the miR-301a inhibitor and NDRG2 groups presented increased NDRG2, and at the same time, other above concerning factors also exhibited opposite tendencies (allP <  0.05). Dual-luciferase reporter gene assay confirmed thatNDRG2 was a target gene of miR-301a, and si-NDRG2 could reverse the neuroprotective effect of miR-301a inhibitor in rats with cerebral I/R injury. Inhibiting miR-301a has a neuroprotective effect on rats with cerebral I/R injury to ameliorate cell apop...
Source: Journal of Molecular Neuroscience - Category: Neuroscience Source Type: research