Effects of stretch reflex on back muscle response during sinusoidal whole body vibration in sitting posture: A model study

This study seeks to examine human vibration response using a musculoskeletal model that appropriately considers stretch reflex. The stretch reflex is modeled with a feedback control approach, and integrated into a generic musculoskeletal model to study the active muscle forces during seated whole body vibration. The model is used to investigate the effects of stretch reflex gain, vibration frequency and vibration magnitude on transmissibility from the seat to upper body and lower body and on muscle activations.The overall model is validated by comparison with thoracic and lumbar muscle activities measured in human participants during whole body vibration. The simulation results were consistent with the experimental results that the peak transmissibility occurred at resonance frequency of 5–6 Hz, and were in line with other experimental studies that found a primary resonance of 4–6 Hz. Furthermore, the peak normalized Electromyography (EMG) level accorded with the activation level for both thoracic and lumbar regions. What's more, an increase of primary resonance frequency was observed with increasing gains of stretch reflex. In contrary, the peak seat transmissibility of the upper body and lower body had a significant reduction.The major contribution of this model is that the proposed stretch reflex model provides a useful method to consider muscle active response in whole body vibration simulation. This may be used in future studies to better understand how stretch r...
Source: International Journal of Industrial Ergonomics - Category: Occupational Health Source Type: research