T1- and T2*-Mapping for Assessment of Tendon Tissue Biophysical Properties: A Phantom MRI Study

Objectives The aim of this study was to quantitatively assess changes in collagen structure using MR T1- and T2*-mapping in a novel controlled ex vivo tendon model setup. Materials and Methods Twenty-four cadaveric bovine flexor tendons underwent MRI at 3 T before and after chemical modifications, representing mechanical degeneration and augmentation. Collagen degradation (COL), augmenting collagen fiber cross-linking (CXL), and a control (phosphate-buffered saline [PBS]) were examined in experimental groups, using histopathology as standard of reference. Variable echo-time and variable-flip angle gradient-echo sequences were used for T2*- and T1-mapping, respectively. Standard T1- and T2-weighted spin-echo sequences were acquired for visual assessment of tendon texture. Tendons were assessed subsequently for their biomechanical properties and compared with quantitative MRI analysis. Results T1- and T2*-mapping was feasible and repeatable for untreated (mean, 545 milliseconds, 2.0 milliseconds) and treated tendons. Mean T1 and T2* values of COL, CXL, and PBS tendons were 1459, 934, and 1017 milliseconds, and 5.5, 3.6, and 2.5 milliseconds, respectively. T2* values were significantly different between enzymatically degraded tendons, cross-linked tendons, and controls, and were significantly correlated with mechanical tendon properties (r = −0.74, P
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research
More News: Chemistry | Radiology | Study