Mechanisms of statin-associated skeletal muscle-associated symptoms

Publication date: Available online 12 March 2019Source: Pharmacological ResearchAuthor(s): Jamal Bouitbir, Gerda M. Sanvee, Miljenko V. Panajatovic, François Singh, Stephan KrähenbühlAbstractStatins lower the serum low-density lipoprotein cholesterol and prevent cardiovascular events by inhibiting 3-hydroxy-3-methyl-glutaryl-CoA reductase. Although the safety of statins is documented, many patients ingesting statins may suffer from skeletal muscle-associated symptoms (SAMS). Importantly, SAMS are a common reason for stopping the treatment with statins. Statin-associated muscular symptoms include fatigue, weakness and pain, possibly accompanied by elevated serum creatine kinase activity. The most severe muscular adverse reaction is the potentially fatal rhabdomyolysis. The frequency of SAMS is variable but up to 30% in patients ingesting statins, depending on the population treated and the statin used. The mechanisms leading to SAMS are currently not completely clarified. Over the last 15 years, several research articles focused on statin-induced mitochondrial dysfunction as a reason for SAMS. Statins can impair the function of the mitochondrial respiratory chain, thereby reducing ATP and increasing ROS production. This can induce mitochondrial membrane permeability transition, release of cytochrome c into the cytosol and induce apoptosis. In parallel, statins inhibit activation of Akt, mainly due to reduced function of mTORC2, which may be related to mitochondrial dysfunct...
Source: Pharmacological Research - Category: Drugs & Pharmacology Source Type: research