The Metastable XBP1u Transmembrane Domain Defines Determinants for Intramembrane Proteolysis by Signal Peptide Peptidase

Publication date: 12 March 2019Source: Cell Reports, Volume 26, Issue 11Author(s): Sara Suna Yücel, Walter Stelzer, Alessandra Lorenzoni, Manfred Wozny, Dieter Langosch, Marius K. LembergSummaryUnspliced XBP1 mRNA encodes XBP1u, the transcriptionally inert variant of the unfolded protein response (UPR) transcription factor XBP1s. XBP1u targets its mRNA-ribosome-nascent-chain-complex to the endoplasmic reticulum (ER) to facilitate UPR activation and prevents overactivation. Yet, its membrane association is controversial. Here, we use cell-free translocation and cellular assays to define a moderately hydrophobic stretch in XBP1u that is sufficient to mediate insertion into the ER membrane. Mutagenesis of this transmembrane (TM) region reveals residues that facilitate XBP1u turnover by an ER-associated degradation route that is dependent on signal peptide peptidase (SPP). Furthermore, the impact of these mutations on TM helix dynamics was assessed by residue-specific amide exchange kinetics, evaluated by a semi-automated algorithm. Based on our results, we suggest that SPP-catalyzed intramembrane proteolysis of TM helices is not only determined by their conformational flexibility, but also by side-chain interactions near the scissile peptide bond with the enzyme’s active site.Graphical Abstract
Source: Cell Reports - Category: Cytology Source Type: research