Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents.

Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents. Ultrason Sonochem. 2019 Mar 05;: Authors: Lu X, Chen J, Zheng M, Guo J, Qi J, Chen Y, Miao S, Zheng B Abstract In this paper, a coconut milk composite system (glycerin monostearate as an emulsifier) with different maize additives (e.g., maize kernels and starch with different amylose contents) was treated with high-intensity ultrasound irradiation (HIUS, frequency 20 kHz). The stability and structural features of the added coconut milk emulsion were studied. Comparing the mechanical emulsifications, coconut milk with maize kernels was similar to coconut milk with high-amylose maize starch. However, coconut milk with a high proportion of amylopectin had the best stability. After ultrasonic treatment, the particle sizes were found to be smaller than those in the nonultrasound-treated coconut milk, and the particles demonstrated a monomodal size distribution. The electronegativity of the compound system was significantly improved. The electronegativity of the maize kernel and high-amylose maize starch-coconut milk systems was significantly decreased, and this change was beneficial to the stability of the systems. However, ultrasonic treatment did not change the fluid type of the coconut milk compound system (which showed pseudoplastic fluid ...
Source: Ultrasonics Sonochemistry - Category: Chemistry Authors: Tags: Ultrason Sonochem Source Type: research