Impact sensitivity of aryl diazonium chlorides: Limitations of molecular and solid-state approach

Publication date: Available online 11 March 2019Source: Journal of Molecular Graphics and ModellingAuthor(s): Sergey V. BondarchukAbstractThe mechanism of the compression-induced decomposition of aryl diazonium chlorides is proposed on the basis of quantum-chemical calculations of both the isolated cations and crystalline materials. The electron transfer from the anion to the cation, followed by the crystal decomposition, is observed with the rise of pressure. Taking the known nature of the structural changes in cations undergone upon reduction, five structural, vibrational and electronic determinants of impact sensitivity are found. Thus, a correlation (R2 = 0.79) between the experimentally known impact sensitivity of 40 different aryl diazonium cations and the developed empirical function Ω, which includes the above-mentioned parameters, is obtained. Meanwhile, an abnormal impact sensitivity of 4-nitrobenzenediazonium chloride (4 J) compared to the parent benzenediazonium chloride (3 J) is rationalized on the basis of first-principles calculations of the latter and its three nitro derivatives. Using our recently proposed solid-state criteria of impact sensitivity, another empirical function Ω was developed being able to predict impact sensitivity of these four salts with very good confidence (R2 = 0.97).Graphical abstract
Source: Journal of Molecular Graphics and Modelling - Category: Molecular Biology Source Type: research