Single-arc VMAT optimization for dual-layer MLC.

In this study, we develop a novel single-arc VMAT optimization framework to take advantage of the unique DLMLC characteristics fully. Direct Aperture Optimization (DAO) for single-arc DLMLC VMAT was formulated as a least square dose fidelity objective, along with an anisotropic total variation term to regulate the fluence smoothness and a single segment term for forming simple apertures. The DAO was solved through alternating optimization approach. The DLMLC deliverability constraint and the MLC leaf speed constraint were formulated as the optimization constraints and solved using a graph optimization algorithm. Feasibility of the proposed framework was tested on a brain, a lung, and a prostate cancer patient. The framework was further adapted for a simultaneous integrated boost (SIB) case. The single-arc DLMLC-10mm (leaf width) plan was compared against single-arc SLMLC VMAT plans including SLMLC-5mm, SLMLC-10mm, and SLMLC with 10 mm leaf width and 5mm leaf step size (SLMLC-10mm-5mm). Compared with the SLMLC-10mm plan and the SLMLC-10mm-5mm plan, with the same target coverage, the DLMLC-10mm plan reduced R50 by 30.7% and 10.0%, the average max OAR dose by 5.79% and 3.7% of the prescription dose, and the average mean OAR dose by 4.18% and 2.1% of the prescription dose, respectively. The plan quality is comparable to that of the SLMLC-5mm plan. The novel single-arc VMAT optimization framework for DLMLC utilizes two MLC layers to improve the effective modulation resolution and ...
Source: Physics in Medicine and Biology - Category: Physics Authors: Tags: Phys Med Biol Source Type: research